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Agriculture is the primary occupation of nearly all nations that feed 
the world's population. The population growth and rising demand 
for food require farmers to increase food production to meet the 
requirements. On the other hand, farming is not regarded as a 
lucrative occupation, as farmers incur significant losses due to 
pests and diseases that reduce the quality and quantity of farm 
produce. Consequently, predicting plant diseases using modern 
technologies will aid producers in making well-informed decisions 
early on. This study employs and compares the results of two 
important computer vision algorithms, YOLOv4 and YOLOv7, for 
classifying leaf diseases from images of leaves from various plant 
species. The models are trained with images of individual leaves 
captured in various environments, imparting resilience and 
adaptability. Both models annotate and predict leaf diseases with 
high confidence for each class. Other classification metrics, such 
as Precision, F1-score, Mean Average Precision, and recall, also 
demonstrate competitive performance. However, YOLOv7 
performs better because its flexible labeling mechanism 
dynamically learns the class labels. In addition, the work can be 
expanded to utilize recommendation strategies to predict the 
extent of injury. 

Keywords: Plant leaf disease, YOLO v4, YOLO v7, Spatial 
pyramid pooling, Mean average precision, IoU, Compound scaling, 
precision agriculture 

1. Introduction 

The world's population is expected to increase by 30% 

over the next 35 years, bringing the total to over 8 billion 

(As shown in Fig. 1). According to a report by the Food 

and Agricultural Organization (FAO), it is necessary to 

increase agricultural yields by at least 60 percent in order 

to meet global food demands (Alexandratos & Bruinsma, 

2012). The agricultural harvests of the past 50 years 

demonstrate that an ambitious objective of 2800 

Kcal/person/day can be reached from 2200 

Kcal/person/day. Despite this growth, many people are 

starving because food distribution is not uniform. 

 
Fig 1: World population growth trend 

Green Revolution, the replacement of traditional 

agricultural practices with modern technologies, use of 

agrochemicals, mechanization of labor, efficient water 

management, expansion of irrigated land, and 

advancements in food storage and processing technologies 

are the primary boosters of food production, according to 

Siedow (2001). As shown in Fig. 2, there is an annual 

upward trend in the yields of primary commodities. 

 

 
Fig 2: Increase in yield of primary crops around the world 

Despite these positive factors, urbanization, 

industrialization, labor market scarcity, climatic factors, 

and ancient agricultural techniques threaten global 

agriculture. This climatic barrier has spawned a potential 

biological hazard to crops, reducing food production 

quality and quantity (Nguyen, Sahin, & Howes, 2021). 

Farmers and governments attempt to adopt effective 

control measures by correlating the plant's epidemiological 

parameters with their cultivation landscape (Gilligan, 

2008). The damages caused by pest and disease attacks 

should not be minimized because they significantly 

threaten crop productivity. 

Plant diseases are categorized broadly as abiotic or non-

infectious and biotic or infectious. Unfavorable 

environmental conditions promote the development of 

non-communicable diseases in plants, which are the 

primary cause of disease transmission. In addition, the 

fragile physicochemical composition of atmospheric 

factors such as air and soil also plays a significant role in 

the genesis of disease. As depicted in Figure 3, 

microorganisms such as fungi, viruses, bacteria, parasites, 
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and nematodes cause infections and diseases in various 

plant parts (Anderson et al., 2004). Monitoring conditions 

such as spotted leaves, leaf exfoliation, ulceration, rots, 

alterations in leaf structure, anthracnose, etc., makes it 

simple to identify infected plants. In addition to affecting 

the quality, the damage caused by these infections 

inevitably reduces productivity. Consequently, the 

agricultural sector is adopting modern agricultural 

practices with technologies such as Agriculture 4.0, 

Precision Agriculture (PA), and others. 

 
Fig 3: Genesis of plant diseases 

Shafi et al. (2019) Precision agriculture concentrates on a 

holistic approach to agricultural management that 

combines spatial, temporal, and individual data with other 

pertinent information to manage crops effectively. PA 

would result in increased productivity, efficiency, 

profitability, and quality (Cisternas, Velásquez, Caro, & 

Rodríguez, 2020). The PA has encouraged using digital and 

analytical instruments in agricultural settings. After the 

introduction of data-driven technologies such as Computer 

Vision (CV), Machine Learning (ML), Internet of Things 

(IoT), Deep Learning (DL), and Big Data Analytics in the 

farming-based decision-making process, the agricultural 

sector has experienced explosive growth (Aravindhan & 

Tamjis, 2022; Sharanya, Venkataraman, & Murali, 2021). 

 

Fig 4: Applications of Computer Applications in Precision 
Agriculture 

According to the literature, CV algorithms are utilized in 

plant health monitoring, harvesting, pruning, planting, and 

weather analysis. CV is an AI subfield that enables 

machines to analyze, interpret, and visualize data. 

Incorporating CV into the agricultural sector is a game-

changer that enables automated agricultural processing (Lu 

& Young, 2020). The use of CV algorithms enables 

producers to make informed decisions. When satellite and 

geospatial images were incorporated into the research, 

technological advancements attained their pinnacle (Jia 

Liu et al., 2021). Figure 4 depicts the most prevalent 

agrovision applications in Pennsylvania. As CV systems 

ensure non-destructive, non-intrusive, and non-invasive 

procedures, particularly for image-based issues, they are 

readily implemented in agriculture. In addition, it can 

record and store data for an extended period of time, 

allowing it to be utilized in the near future (Firdaus & 

Kamil, 2022). These algorithms can supplant laborious, 

inefficient, time-consuming, and inaccurate manual 

inspection (Ratnayake, Dyer, & Dorin, 2021). This more 

robust sensing technology can be used to monitor 

numerous agricultural areas because CV algorithms rely 

on  The three fundamental phases of CV, which consist of 

image collection from a live camera feed or recorded 

source, image processing, and image analysis. 

 

 

 

 

 
Fig 5: Types of CV problems 

The identification or detection of an image verifies 

whether the object in the image conforms to a pattern 

described in the source. This validation is based on the 

similarity measure of the extracted features of the image 

embeddings (Yuan, Chen, Wu, & Li, 2022). Object 

detection algorithms, conversely, are a step ahead by 

determining the coordinates or exact locations of objects 

that fit under a specific class label (Persello, Tolpekin, 

Bergado, & De By, 2019). The classification of an image 

assigns the object to a specific class label (Hashemi-Beni 

& Gebrehiwot, 2020). CV algorithms can detect multiple 

objects within a single image. CV algorithms can perform 

semantic segmentation to comprehend the image's context 

or scenic information (Anand, Sinha, Mandal, Chamola, & 

Yu, 2021; Chai, Zeng, Li, & Ngai, 2021). Powerful DL 

algorithms are versatile and robust and produce more 

accurate results in nearly all real-time image recognition 

problems due to their adaptability and durability. Deep 
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Neural Networks (DNN), Convolutional Neural Networks 

(CNN), ResNET, YOLO, RNN-CNN, Inception net, 

AlexNET, LeNET, etc. Patrício and Rieder (2018) 

catalyzed the main breakthrough in CV. These 

architectures made it feasible to develop CV and image 

recognition-based solutions for accurately identifying, 

classifying, and analyzing agricultural images. 

2. Leaf disease detection 

Traditional methods for isolating and detecting plant 

diseases rely on agricultural specialists' manual experience 

and unaided eye examination. This requires continuous 

monitoring of plants, which is extremely monotonous, 

time-consuming, and inaccurate. In addition, the cost of 

the manual inspection in large farms is quite significant. In 

addition, a limited number of domain specialists are 

available for consultation, which impacts accessibility and 

increases waiting times (Allahyari, Mohammadzadeh, & 

Nastis, 2016). Under such circumstances, the disease may 

spread and affect a significantly larger area of crops. 

Consequently, automatic surveillance of plants to detect 

the presence of any type of disease is a natural alternative 

that would be much cheaper and quicker, even for large 

farms. Automatic plant leaf disease detection is achieved 

by using machine vision algorithms to provide image-

based process control, monitoring, and guidance via 

appropriate decision support systems (Sujatha, Chatterjee, 

Jhanjhi, & Brohi, 2021). The entire procedure is depicted 

in Figure 7. Consequently, contemporary technologies 

such as IoT, ML, DL, BDA, and cloud computing are 

utilized to detect plant leaf maladies in various plant 

species by analyzing various physical plant characteristics. 

The overall investigation is conducted by examining 

morphological properties and characteristics such as 

intensity, dimension, and color (Gavhale & Gawande, 

2014). Fig. 7 depicts several prevalent plant diseases. 

 
Fig 6: Process of plant lead disease detection 

Detection of leaf diseases promptly enables producers to 

initiate early disease management strategies, thereby 

increasing agricultural output. As is evident, PA is the 

foundation for leveraging modern technologies to improve 

and modernize agricultural practices. The CV algorithms 

are an efficient method for image-based crop monitoring. 

This study employs the well-known You Only Look Once 

(YOLO v4 and YOLO v7) models to detect and classify 

leaf diseases. In addition, it analyzes the distinguishing 

characteristics of both models and compares their efficacy 

in classifying plant leaf diseases. The YOLO belongs to the 

category of Single Shot Detection (SSD) algorithms 

(Jiang, Ergu, Liu, Cai, & Ma, 2022); it can classify or label 

diseased leaves with a substantial improvement in both 

time and accuracy, making it more suited for real-time 

farming applications. 

 
Fig 7: Types of plant leaf diseases 
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3. Literature Survey 

Traditional agricultural practices involved manual inspection 

of leaves. The advent of AI, DL, and CV has made pest and 

plant disease identification simpler and more accurate. This 

evolution results from cutting-edge computing technologies, 

which have attracted many researchers to explore PA further 

and develop novel models. 

Noguchi, Reid, Zhang, and Tian (1998) developed a hybrid 

ML model that combined Genetic Algorithm (GA) with 

optimized fuzzy rules to select more suitable crop features 

from the images. Singh and Misra (2017) state that 

Artificial Neural Networks (ANN) are used to isolate 

plants in fields at various growth stages. The primary 

contribution of this work is extracting weeding 

information from the Geographic Information System 

(GIS) for a more precise separation of weeds of varying 

heights. A com. Arivazhagan, Shebiah, Ananthi, and 

Varthini (2013) examines various soft computing 

techniques in addition to the design of a novel model by 

integrating GA and Support Vector Machine (SVM). GA is 

used to segment or isolate the infected portion, whereas 

SVM employs minimum distance for classification. To 

isolate diseased pine leaves, segmentation is performed 

using color co-occurrence. 

The PA is advancing in a new dimension after the advent 

and development of CV, ML, and DL algorithms. In DL 

and ML-based methods, image classification is performed 

in stages that enable the detection and localization of single 

and multiple objects from an input image. This is 

accomplished in two ways:  1) Generate a sequence of 

candidate frames to serve as samples. ML or DL 

algorithms will classify the images based on these 

reference images, as in RCNN, speedier RCNN, and R-

FCN (Dai, Li, He, & Sun, 2016; Girshick, Donahue, 

Darrell, & Malik, 2014; Ren, He, Girshick, & Sun, 2015). 

W. Liu et al. (2016) categorized the transformation of 

object locations by drawing bounding frames and 

modifying the application as a regression problem. 

Li, Ahmed, Wu, and Sethi (2022) conducted a 

comprehensive investigation of leaf disease in jute plants 

and constructed a YOLO-JD architecture with three feature 

extraction modules. This model examines the input image 

from multiple perspectives, including constructing 

features via spatial pyramid pooling, Sand clock, and deep 

sand clock methods, to extract significant features from 

leaf images. Mohandas, Anjali, and Varma (2021) note that 

a distinguishing feature of YOLO is incorporating the 

disease detection module as a mobile application to 

facilitate its deployment in agricultural fields. In addition, 

Ponnusamy, Coumaran, Shunmugam, Rajaram, and 

Senthilvelavan (2020) have developed a wearable device 

to detect leaf diseases. A computational module on the 

device performs classification using the YOLO 

framework. Alternately, a pyramid of tomato leaf images 

was used to enhance the multi-scale feature detection, 

thereby enhancing the performance efficacy of YOLO (Jun 

Liu & Wang, 2020). 

Using a pre-trained Alexnet architecture and 13,689 reference 

images, the detection of common leaf maladies in apple plants 

was accomplished. The infected leaf is identified by a robust 

CNN (Fuentes, Yoon, Kim, & Park, 2017; Mohanty, Hughes, 

& Salathé, 2016). R-CNN integrated with Long Short-Term 

Memory (LSTM) is used to detect tomato leaf disease and 

parasite disease. Metadata from Faster R-CNN, RCNN, SSD, 

and R-FCN are compared with meta-features extracted from 

ResNet and VGG in a comparative analysis of CV architectures 

for leaf disease identification. 

The classification of 13 leaf maladies using the CNN 

framework in the Caffe framework is performed 

(Sladojevic, Arsenovic, Anderla, Culibrk, & Stefanovic, 

2016) with high accuracy. Sibiya and Sumbwanyambe 

(2019) is a publication that employs CNN to designate 

maize leaf diseases. The model could annotate three 

categories of diseases in South African maize field images. 

Extensive research indicates that CV algorithms based on 

deep learning are extraordinarily useful for producers. 

Despite these advancements, models for plant disease 

detection still face several obstacles: 

1. The plant foliage may be captured against various 

cluttered backgrounds, hindering detection. 

2. Every plant species has a distinct leaf 

arrangement and structure, so the model must also 

understand this. 

3. There is a high probability that the leaves retain 

their original structure but are covered in mud, 

and stalks, are partially torn, have withered 

blossoms, etc. 

4. Parasites, diseases, and grazing animals alter the 

morphological properties of the leaves. This 

complicates the detection process. 

5. Image quality is affected by environmental 

conditions, camera fidelity, and the atmosphere. 

6. Drawing a sharp, well-defined line between 

infected and uninfected areas is difficult. 

7. The disease's symptoms are not typical. Climate, 

environment, and geographic location influence 

changes in disease-causing agents. This makes 

the detection and labeling processes difficult. 

The enumerated difficulties in leaf disease classification 

demonstrate the need for a comprehensive and 

robust framework for labeling leaf diseases in 

given leaf samples. According to the available 

literature, only a few models can accurately 

identify leaf diseases. The pre-trained YOLO 

model is one of the most effective leaf disease 

detection methods in SSD. There are numerous 

versions and updates of the YOLO framework. 

This work compares the architectures, features, 

and prediction efficiency of YOLO v4 and YOLO 

v7 in the context of leaf disease prediction. 

4. YOLO v4 in the classification of plant leaf 
disease 

The study of CV algorithms reveals the use of numerous 

versions of YOLO, such as YOLOv2, YOLOv3, YOLOv4, 
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YOLOv7, etc. The construction of many residual network 

modules that support multi-scale prediction is a key factor that 

has made the pre-trained YOLO models more successful than 

other DL-based CV models. This significantly improves the 

accuracy of predictions. This study contrasts two successful 

YOLO versions, YOLOv4 and YOLOv7, for classifying the 

detection of plant leaf diseases. The RGB images of multiple 

plant foliage of different species with various diseases are input 

to the models. Each image is partitioned into S x S grids. As 

prediction metrics, the YOLO models utilize confidence scores. 

The score of confidence for a sound leaf will be returned as 0. 

In the case of diseased leaves, the predicted confidence score is 

calculated using the Intersection Over Union (IoU) between the 

prediction bounding box and the ground truth. 

This SSD algorithm employs multiple 3 x 3 and 1 x 1 

convolution layers to extract leaf image features. The 

principal components of YOLO are the backbone network 

and the cranium and neck. The proposed YOLOv4 model 

utilizes the Cross Stage Partial Darknet53 to extract 

important image features. This serves as a feature extractor 

because it consists of convolutional and CSP blocks. These 

blocks divide the feature maps and then converge them 

cross-phase. This enables the propagation of important 

information as gradients. Fig. 8 depicts the configuration 

details of YOLO version 4. 

 
Fig 8: Configuration details of YOLOv4 

Figure 9 depicts the YOLO architecture for classifying leaf 

diseases. As part of dimensionality reduction, a max-

pooling layer is added following every Convolution 

Backnorm and Leaky RELU (CBL) block. Each Cross 

Stage Partial (CSP) is joined at both extremities to a CSP 

block. The Path Aggregation Network (PANet) serves as 

the model's spine. In addition, the model employs Spatial 

Pyramid Pooling (SPP), which is responsible for 

compressing the input derived from multiple convolution 

layers to produce feature maps with identical dimensions. 

This improves the model's robustness as it can manage 

images with dimensions greater than (w, h)= (180, 224) 

and images with arbitrary scaling. 

The PANet in YOLOv4 combined the bottom-up and top-

down trajectories of feature vectors to preserve semantic 

information in the feature maps (Sarkar & Johnson, 2022). 

This improves instance-based segmentation while 

simultaneously preserving contextual and spatial 

information. This information is crucial for disease 

identification in leaves, as healthy and infected regions are 

nearby within a small area. This work utilizes YOLO v4 

with 26 x 26 and 13 13 feature maps. 

 
Fig 9: YOLOv4 model to predict the Leaf Disease 
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5. YOLO v7 in the classification of plant leaf 
diseases 

YOLO v7 is used to classify plant leaf disease from healthy 

leaves by drawing bounding outlines. Figure 9 depicts the 

entire YOLO architecture for plant leaf disease detection 

and classification. The deployed model draws prominent 

bounding outlines around infected regions with greater 

precision and speed. The following are notable features of 

YOLO v7: 

• YOLOv7 uses the concept of bag-of-freebies 

methods for object detection. 

• The dynamic label assignment is a distinguishing 

feature of YOLOv7, which has specialized re-

parameterized modules for achieving this. 

• The model follows extended and compound 

scaling to finetune the parameters. 

 
Fig 10: YOLO v7 architecture for plant leaf disease classification 

The YOLOv7 architecture utilizes extended Efficient 

Layer Aggregation Networks (E-ELAN) to stabilize the 

model. Regardless of the gradient path length, the leaf 

images are processed by layering computational blocks 

vertically. The E-ELAN uses the expand-shuffle-merge 

cardinality functions to enhance learning without altering 

the gradient path. To execute these operations, the 

convolutions are grouped to increase the number of 

channels and the cardinality of the blocks. Universally, the 

same quantity of group parameters and channel multiplier 

is applied to all computational units. The feature maps are 

shuffled into 'g' groups based on the specified group 

parameter, then concatenated to preserve their originality. 

Using the merge cardinality function, the clusters of 

feature maps are then instructed to learn unique features. 

This model scales the model to modify the image's 

resolution, depth, stage, and width. YOLOv7 employs 

Network Architecture Search (NAS) that iterates through 

image parameters to converge on the optimal scaling 

factors, as opposed to the compound model scaling, to 

maintain depth and width coherence. The compound 

scaling process is depicted in Figure 11. 

 
Fig 11: Compound model scaling in YOLOv7 (Wang, Bochkovskiy, & Liao, 2022) 
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The YOLOv7 architecture uses extended Efficient Layer 

Aggregation Networks (E-ELAN) to ensure the stability of 

the model. Regardless of the gradient path length, leaf 

images are processed by vertically stacking computational 

blocks. The E-ELAN employs the expand-shuffle-merge 

cardinality functions to improve learning without 

modifying the gradient path. In order to carry out these 

operations, the convolutions are grouped to increase the 

number of channels and cardinality of the blocks. The 

same number of group parameters and channel multiplier 

is applied universally to all computational units. The 

feature maps are shuffled into 'g' groups based on the group 

parameter, then concatenated to preserve their uniqueness. 

The feature map clusters are then instructed to learn unique 

features using the merge cardinality function. This model 

adjusts the image's resolution, depth, stage, and breadth by 

scaling the model. In order to maintain depth and width 

coherence, YOLOv7 employs Network Architecture 

Search (NAS) that iterates through image parameters to 

converge on the optimal scaling factors, as opposed to the 

compound model scaling. The process of compound 

scaling is depicted in Figure 11. 

Predicting the Bounding boxes 

The YOLO models employed in this work deploy the 

Complete Intersection over Union (CIoU) loss to optimize 

the bounding box prediction. The confidence score (Cj
i) of 

the jth bounding box in the ith grid  is given in Equ 1: 

Ci
j
=Ai, j*IoU                                                                    (1) 

The leaf is denoted as Ai,j, while IoU is the union between 

the predicted and actual bounding boxes. The total loss 

(Ltotal) in these models is computed as the accumulation of 

three major loss functions: loss in classification (Lcla), loss 

in regression loss ( Lreg), and loss in confidence (Lconf), and 

it is mentioned in Equ 2. 

loss = lbox + lobj + lcls                                                  (2) 

6. Experimental analysis 

The models are validated using the Plant Village Dataset, 

which comprises 54,305 high-resolution images of 14 

plant species afflicted with 26 diseases (Hughes & Salathé, 

2015). The dataset is comprised of both training and testing 

subsets. Table 1 summarizes the classes, plants, and 

diseases with testing and training data. 

Table 1: Summary statistics of Plant Village Dataset 

Crop Disease Training images Testing images Crop Disease Training images Testing images 

Apple Apple cab 504 126 Apple Black rot 496 125 
Apple Cedar apple rust 220 5 Apple healthy 1316 329 

Blueberry Healthy 1202 300 Cherry Healthy 684 170 
Cherry Powdery mildew 842 210 Corn Cercospora leaf spot 410 103 
Corn Common rust 953 239 Corn Healthy 929 233 
Corn Northern leaf blight 788 197 Grape Black rot 944 236 

Grape Esca 1107 276 Grape Healthy 339 84 
Grape Leaf blight 861 215 Orange Haunglongbing 4405 1102 
Peach Bacterial spot 1838 459 Peach Healthy 288 72 

Pepper bell Bacterial spot 797 200 Pepper bell Healthy 1183 295 
Potato Early blight 800 200 Potato Healthy 121 31 
Potato Late blights 800 200 Raspberry Healthy 297 74 

Soybean Healthy 4072 1018 Squash Powdery mildew 1468 367 
Strawberry Healthy 364 92 Strawberry Leaf scorch 887 222 

Tomato Bacterial spot 1702 425 Tomato Early blight 800 200 
Tomato Healthy 1273 318 Tomato Late blight 1527 382 
Tomato Leaf mold 761 191 Tomato Septoria leaf spot 1417 354 
Tomato Spider mites 1341 335 Tomato Target spot 1123 281 
Tomato Mosaic virus 299 74 Tomato Yellow curls 4286 1071 

The input image dimensions are 224 by 224, and the 

learning rate for both models is 0.001. The epochs were 

limited to 3000, with a weight decay rate of 0.00005 and a 

momentum decay rate of 0.90. Table 2 compares YOLOv4 

and YOLOv7 on the COCO benchmark dataset. 

Table 2: Comparison of YOLO v4 and YOLO v7 

Model No of parameters FLOPs Size Average Precision Average Precision on 50% IoU Average Precision on 75% IoU 

YOLO v4 64.4M 142.8G 640 49.7 68.2 54.3 
YOLO v7 36.9M 104.7G 640 51.2 69.7 55.5 

Fig 12 and 13 shows a few sample plant leaf disease 

classification using YOLO v4 and YOLO v7 models. The 

annotations and the confidence score of both models are 

equivalent and are competitive with each other. The real 

comparison can be made by assessing other classification 

metrics. 

 
Fig 12: Plant leaf disease classification using YOLOv4 
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Fig 13: Plant leaf disease classification using YOLOv7 

The confidence score is the likelihood (Pr) that the 

bounding box has a leaf and is computed using Equ 3. 

Box confidence=Pr (Object) * IoU ( Truth

Predict
) (3) 

IoU is estimated as the proportion of intersection and union 

of predicted and ground truth bounding boxes. The 

calculation IoU is done according to Equation (4). 

 

(4) 

Each grid cell in the leaf image is assigned the value 1 as 

conditional class probability, Pr(class| object), which 

indicates the likelihood of the leaf class. The confidence 

score is computed as Equ 5. 

Class confidence= box confidence * Pr (class | object)                                         

(5) 

Accuracy verified the efficacy of the models, Mean 

Average Precision (MAP), precision, and Recall as given 

in Equations (6) to (9). 

Precision=
True_Positives

True_Positives+False_Positives
 

 

(6) 

Recall=
True_Positives

True_Positives+False_Negatives 
 

 

(7) 

F1 Score=
2 * Precision * Recall

Precision+Recall 
 

 

(8) 

MAP=
1

𝐶
 

∑
𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
𝑐 𝜖 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

 

(9) 

The performance comparison between YOLO v4 and 

YOLOv7 is given in Table 3. It can be seen that the 

YOLOv7 has better values of precision, F1-score, recall, 

and MAP than YOLO v4. The YOLOv7 model performs 

better as it can dynamically allocate the classes, 

quintessential in datasets with more classes, such as plant; 

leaf disease classification. The YOLOv4 could not perform 

well because it could not train well on dynamic classes, a 

distinguishing feature of YOLOv7. 

Table 3: Performance comparison of different models 

Model Precision Recall F1-Score MAP 

YOLO v4 0.74 0.621 0.703 0.786 
YOLO v7 0.82 0.78 0.80 0.822 

Thus this study indicates that recent versions of YOLO are 

showing more advancements, from forming feature maps 

to adding more powerful layers. 

7. Conclusions and Future Works 

This study compares the performance of two prominent 

object detection and classification models, YOLO v4 and 

YOLO v7, in detecting diverse leaf diseases. The 

performance comparison reveals that both architectures 

have a competitive edge, but YOLOv7's compound scaling 

and dynamic labeling provide superior performance. In 

addition, E-ELAN, reparameterization, and model scaling 

for drawing adaptive bounding boxes have significantly 

increased the model's predictive power and localization 

capability. YOLO v4 should not be viewed as a suppressive 

model. Classification of plant leaf diseases is facilitated by 

its PANet-learned features with adaptive bounding boxes. 

Nonetheless, YOLOv7 outperforms YOLOv4, as the 

former performs better across all classification metrics. In 

addition, YOLOv7 is more robust in isolating diseased leaf 

regions from healthy leaf regions with varying resolutions, 

scales, growth cycles, and environmental conditions. As 

future extensions, models could be constructed to output 

the infection stage and extent of the plant leaf so that 

producers are well-informed about the plant's health and 

can take corrective measures. 
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